
Jeff Gokingco @ 2621
M68040 Documentation Errata (new) MC68000 Documentation
 Errata, Documentation Support
040cqfp.eps (Faxable)

68040UM/AD Rev.1 Errata

page 12-2, 12-3, 12-5: PGA drawing shows pin S6 correctly as MDIS*
but table at bottom of page incorrectly lists pin S6 as Internal
Logic GND.

page 12-4: PGA drawing 12.2.3 shows pin S6 correctly as JS1, but
table at bottom of page incorrectly lists S6 as GND.

page 12-10: There are drawing errors in Figure 12-2. Refer to
040cqfp.eps.

page A-5 First bullet: Delete the word "small". Sentence should read
"The MC68LC040 does not implement the output buffer imedance
selection mode.

page 7-52 to 7-58: Section 8.2 Bus Arbitration Examples section
contains many errors in various figures. Please ignore this section
if it confuses the reader.

page 7-47 Figure 7-30: State machine should indicate that a
transistion from the Implicit Ownership state to the OWN/PARK state
be caused by the condition: BG (bus grant) asserted and IBR (internal
bus request) asserted.

page 8-31 Table 8-6: In the column "Hard Cleanup Action", the comment
"Write PD3-0 and skip" applies only to the the Write Page Fault case
in which a MOVE16 (2M16=1)in the WB2S.

All 68040/LC040/EC040/040V devices, all masks: Attention on Usage

The following items provide clarification to the operation of the
68040. The description of these items takes precedence over any
previous description contained in the M68040 User's Manual.

Item #1004: The TLN pins during instruction line fetches are not
valid. However, they are valid for data line fetches.

Item #1005: The RESET instruction causes the PSTx signals to indicate
exception stacking instead of START/CONTINUE encoding.

Item #1285: Under certain conditions, the processor asserts BR* and
negates it later without executing a bus cycle. External arbiter
designs take into account this possible behavior.

Item #1327: If in supervisor mode, a stack frame is restored which
has an odd address PC and an SR which indicates user trace mode, then

an address error is taken, but the SR stacked for the address error
has the supervisor bit set in the SR. For the 030, the supervisor bit
is clear.

Item #1426: In a two, '040-type master system when a master which
implicitly owned the bus has its BG* negated it tristates the address
and attribute lines it was driving in the next clock period. However,
if another '040-type master is given the bus with its BG* asserted at
the same time the previous master has its BG* negated, this master
can start driving its address and attribute lines at the same time
the previous master is trying to tristate them.
 External arbiters must be designed such that there is at least one
rising BCLK edge in which all bus masters have their respective BG*
inputs negated when transferring bus ownership to another master.

Item #1479: A locked access can erroneously hit in the data cache,
even though the data cache is disabled. When the data cache is re-
enabled at a later time, the first non-locked access that misses in
the data cache will not be allocated in the data cache.
 Although it is unclear what impact this has on typical systems, to
avoid encountering this item, it is best to invalidate the data cache
when it is disabled.

Item #1483 When a TLB or TTR write protect fault is taken on the
MOVE16 write, in which the MOVE16 source is dirty in the cache, and
that the source and destination addresses for the MOVE16 are the
same, (specifically, a MOVE16 (Ax)+,(Ay)+ instruction in which
Ax=Ay), the associated dirty cache line is invalidated and lost.

Item #1509:If a LOCKED access (TAS/CAS instruction) hits a dirty
entry in the data cache, it invalidates the matching valid entry and
pushes it out. The 040 will begin asserting the external LOCK* pin on
this cache push. Strictly speaking, the proper behavior of the 040
should be to perform the cache line push first before asserting the
LOCK* signal.
 A workaround for systems that cannot tolerate long periods of time
in which the LOCK* is asserted, is to place semaphores in cache-
inhibited space to avoid this situation.

Item #1556: Bus error (TEA* asserted) on cache line push within the
neighborhood of an interrupt exception processing sequence may cause
a Spurious Interrupt Exception instead of an Access Error Exception.
The following sequence describes the problem:
 1) IPLx* lines are asserted to signal an interrupt request.
 2) IPEND* is asserted to signal a pending interrupt processing.
 3) A cache push of a data cache line occurs. This cache push to
 memory results in a physical bus error (TEA* asserted). The
 PSTx=$F indicates exception stacking, although the 040 has not
 yet begun exception processing or exception stacking for the
 interrupt.
 4) The 040 starts exception stacking for a Spurious Interrupt
 Exception.
In the strictest definition of a Spurious Interrupt, there is only
one case in which the Spurious Interrupt Exception is signaled:
physical bus error during an Interrupt Acknowledge Cycle. In this
case, a bus error terminates a cache line push access instead of an
Interrupt Acknowledge cycle. However, a cache line push access should
be rare, if ever, in a typical system environment. The fact that the

cache line resided in the cache prior to its push indicates that the
physical memory associated with that cache line had been coherent and
accessible at the time of its allocation into the cache.
 The workaround is treat this case as a catastrophic, non-
recoverable case and to point the Spurious Interrupt Exception
handler to the appropriate catastrophic system error entry point.

Item #VD14: A misaligned data cache lookup with Snoop Invalidate may
result in wrong data. The following sequence describes this problem:
 1) The 040 performs a misaligned read that spans two cache lines,
 and the first part of a misaligned data read hits in the first
 cache line, and the data is used.
 2) A snoop occurs on the second cache line associated with the
 second part of the misaligned read, hence invalidating the
 second cache line and updating main memory with new data.
 3) The second part of the misaligned read misses in the data
 cache, goes out to main memory and picks up the new data.
 Hence, the operand read by the 040 is half old, half new.
In this case, the correct data is dependent on the timing of the read
relative to the snoop access. The correct answer needs to be the
"old" data in its entirety, or the "new" data in its entirety, not
the half-new, half-old as supplied by the processor in this case.
There are two possible workarounds:
 1) Shared memory space must be accessed using aligned operand
 accesses only
 2) Shared memory pages must be accessible to only one master at
 any one time (implemented via semaphores, and these semaphores
 must not be misaligned).

Item #1527 If a write in copyback space is misaligned so that the
operand request spans two cache lines, and a bus error (TEA*
asserted) is received on the fetch of the second, third or fourth
longword of the second cache line fill, then the Access Error
exception handling may not be recoverable without loss of data.
 Specifically, if subsequent instructions also write to an address
that hits in the same first cache line used by the original
instruction, then the data written by any number of these subsequent
instructions may be lost, until an instruction misses in the cache or
the fetch of the second line is terminated by a TEA*.
 To recover from the bus errors (TEA* asserted), 1) do not allow
misaligned operands to span across two cache lines when using the
copyback mode, or 2) place a NOP instruction after instructions which
have misaligned write operands that span two cache lines in copyback
space.

Item #JG100: If a line transfer is burst inhibited via the assertion
of TBI*, three additional longword bus cycles are run by the 040 to
complete the original line transfer. Within the tenure of these fake-
burst transfers, assertion of TA* during the BCLK edges in which TS*
is asserted will result in improper sequencing of the line transfer.
Normally, the 040 ignores TA* during these edges. The workaround is
to ensure that TA* is negated whenever TS* is asserted.

The following items are MMU related. Hence, they apply only to the
68040, 68040V, 68LC040.

Item #1255: Under limited instruction alignment and tablewalk-related
conditions of a MOVES instruction execution resulting in an operand
bus error, and the MOVES is immediately followed by a MOVEM
instruction, the processor may improperly set the CM bit in the
access error frame. When an RTE is eventually encountered to exit the
access error handler and to restore this erroneous frame, and that
the instruction to be restarted, as pointed to by the stacked program
counter is not a MOVEM instruction, pending interrupts will not be
reported until the next MOVEM instruction is encountered. The
workaround is to place instructions between the MOVES-MOVEM
instruction pair.

Item #1324: Table and page descriptors must not be placed in
cacheable copyback pages. Also, the operating system must not leave
page descriptors in pathological combinations such as U=0, M=1. This
error condition may cause silent data corruption.

Item #1409: The P bit of the TC is undefined out of reset. This bit
must be set properly to the desired page size before enabling the
MMU.

Item #1505 If the last 16 bits of a page is one of the special
exception-causing change of flow cases: Illegal, Chk, A-Line,
Unimplemented floating-point (type $2 stack frame), and the next page
is non-existent (or non-resident, pdt=0), the exception is not
reported immediately. Instead, the 040 attempts to prefetch the next
instruction on the non-existent (or non-resident) page, resulting in
an access fault exception in which the stacked program counter points
to the special exception-causing change of flow instruction opcode,
and the fault address points to the beginning of the non-existent (or
non-resident) page. The workaround is to either avoid the above
scenario, or to have the access error handler allocate the non-
resident page, execute an RTE to effectively re-start the special
exception-causing change of flow instruction.

Item #1119: When accessing I/O peripherals that are sensitive to
double writes, the following guidelines must be followed:
 1) The peripheral must reside in non-cacheable, serialized memory.
 2) If possible, use only instructions that can generate one data
 page fault per instruction.
 3) Do not the use of the following instructions: bfclr, bfset,
 bfins, movem, fmove, fmovem, fsave, movep, movem.

Item #1553: If a table walk occurs during exception stacking for a
write access which was bus errored, the access error stack frame will
incorrectly indicate valid WB1 and WB2 with the same address and
data.
To avoid a duplicate write, the access error handler must detect this
case and discard the WB1 write-back. The pseudo-code is as follows:
 if (WB1V==1 && WB2V==1 && WB1S==WB2S && WB1A==WB2A){
 WB1V=0; /* clear WB1V, i.e. do not write-back WB1D*/.
 }
This workaround will not compromise data integrity, nor will it
discard intentional multiple writes to serialized space.

Item #1557: Under certain circumstances, a MOVE16 write ATC fault
improperly invalidates a dirty cache line. The following steps are

needed to encounter this item:
 1) Assume a physical cache line at address $xxxxxZZZ that is in
 the data cache and is marked dirty.
 2) Execute MOVE16 src,$yyyyyZZZ, where the page descriptor for
 logical page $yyyyy is marked invalid, but the physical
 address field in this invalid descriptor (supposed to be
 undefined) is $xxxxx.
 3) The MOVE16 write access results, as it should, in an access
 error exception since the page descriptor for the MOVE16 write
......destination is an invalid descriptor. However, the physical
 address field in the invalid descriptor is incorrectly used as
 a valid translation of logical page $yyyyy, and the "matching"
 cache line $xxxxxZZZ is incorrectly invalidated, causing a loss of
 data.
A workaround is to set the physical address field in all invalid
descriptors to a physical page which is never mapped in the system. A
MOVE16 write fault will never find a matching line in the cache to
(incorrectly) invalidate.

The following items are Floating-point related. Hence, they apply to
the MC68040 only.

Item #1045: An floating point BSUN exception handler must use the PC
in the integer stack frame to point to the offending floating point
instruction. The value in the FPIAR is invalid.

Item #1139: When executing an FSAVE, a bus error after the first two
write bus cycles will cause the processor to stack a null frame
instead of an idle frame. Furthermore, when the bus error exception
is taken, the FA field of the Access Error frame is incorrect.

Item #1215: After reset, if a floating-point conditional (FNOP, FBcc,
FDBcc, FTRAPcc, FScc) instruction is executed, followed by an FSAVE,
the FSAVE frame indicates NULL instead of IDLE.

Item #1291: An FMOVE FPn,FPm instruction may execute in 3 cycles
instead of 2 cycles.

Item #1424 When executing an FMOVE to memory instruction, and the
next instruction prefetch results in a bus error, the destination
memory may be written twice even if it is designated as non-cacheable
serialized. Hence, the FMOVE instruction must not be used for
accessing I/O peripherals in which unintentional double writes cannot
be tolerated.

